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Motivation

Diet and exercise are essential components of 
interventions to diabetes and obesity
– Sensing approaches exist to measure exercise automatically
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Motivation

Diet and exercise are essential components of 
interventions to diabetes and obesity
– Sensing approaches exist to measure exercise automatically
– Yet, no automated methods exist to measure diet
– Currently, diet monitoring requires manual entry or recall, 

which are tedious and error-prone
– Can sensing technology and AI help?
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Overview

In this talk, I overview current technology in 3 areas
– Advances in mobile applications for diet logging
– Wearable sensors to detect dietary behaviors
– Personalized nutrition programs

I also present ongoing work at TAMU in this area

Advances in mobile apps Sensors for diet monitoring Personalized nutrition
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I. Mobile applications for diet logging

Advantages over paper-based diaries
– Ubiquity of smartphones avoids the need to carry physical 

food diary
– Access to large food databases

• MyFitnessPal has 11M food items (unverified)
• Nutritionix has 800k grocery items and 170k restaurant items 

(verified)

– Ability to scan barcodes of packaged foods
– Can be integrated with external devices

• Smart scales
• Fitness trackers
• Continuous glucose monitors, ketone monitors
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Recent advances in mobile apps
– Photographic food diaries

• Avoid data hoarding
• Photos encourage in-the-moment awareness
• Photos improve memory recall and understanding

– Food recognition from photographs using AI
• Apps: Lose it!, CalorieMama, Snaq, Undermyfork
• APIs: bite.ai, FoodAI



Examples
undermyfork snaq
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S. Jiang, W. Min, Y. Lyu, and L. Liu. 2020. Few-shot Food Recognition via Multi-view Representation Learning. 
ACM Trans. Multimedia Comput. Commun. Appl. 16, 3, Article 87 (August 2020), 20 pages. 
https://doi.org/10.1145/3391624
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II. Wearable sensors for diet

Physical sensors
– Gesture recognition with inertial sensors

• 3D accelerometers
• Gyroscopes

https://mug.ee.auth.gr/intake-cycle-detection/
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II. Wearable sensors for diet

Physical sensors
– Gesture recognition with gyro and accelerometers
– Muscle movement and sound with electromyography and 

microphones

Zhang, R.; Amft, O. Retrieval and Timing Performance of Chewing-Based Eating Event Detection in 
Wearable Sensors. Sensors 2020, 20, 557. https://doi.org/10.3390/s20020557
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II. Wearable sensors for diet

Physical sensors
– Gesture recognition with gyro and accelerometers
– Muscle movement and sound with electromyography and 

microphones
– Smart utensils

https://www.hapilabs.com/
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Chemical sensors
– Breathalyzers (ketone meters, metabolic fuel)
– Experimental sensors (sweat, tooth-mounted)
– Continuous glucose/ketone monitors

https://www.ketonix.com/
https://www.lumen.me/

[Tseng et al, 2018]
[Sempionatto et al. 2020]

https://www.freestyle.abbott/
https://www.dexcom.com/
https://www.ascensiadiabetes.com/
https://www.ketonix.com/
https://www.lumen.me/


Based on CGMs
– NutriSense
– Levels
– Cignos

III. Personalized nutrition

Based on gut microbiome
– DayTwo
– Viome

https://www.daytwo.com/ https://www.nutrisense.io/https://www.viome.com/
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DayTwo [Zeevi et al. 2015]

Zeevi D, Korem T et al. Personalized Nutrition by Prediction of Glycemic Responses. 
Cell, 163(5):1079-1094, 2015 doi: 10.1016/j.cell.2015.11.001.
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DayTwo [Zeevi et al. 2015]

https://www.daytwo.com/

Zeevi D, Korem T et al. Personalized Nutrition by Prediction of Glycemic Responses. 
Cell, 163(5):1079-1094, 2015 doi: 10.1016/j.cell.2015.11.001.

https://www.daytwo.com/


The Zeevi et al. (2015) study
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Ongoing work at Texas A&M University

The goal of Zeevi et al. (2015) study was to develop 
a forward metabolic model
– Given food macronutrients (and phenotype* variables), 

predict the postprandial glucose response (PPGR)

My work with colleagues at TAMU aims to develop 
inverse metabolic models
– Given the PPGR to a meal (and phenotype),

predict the meal’s macronutrient composition

* HbA1c, BMI, gut microbiome…
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Inverse problems

Inverse problems deal with calculating the causal
factors that led to a series of observations
– Localizing brain activity from surface measurements (EEG)
– Localizing a sound from dispersed microphones
– Reconstructing speech acoustics from facial movements
– Solving crime from evidence…
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How to build inverse metabolic models

In the long term, by developing 
sensors for other nutritional 
biomarkers
– Amino acids (for protein)
– Triglycerides (for fat)
– Glucose + Insulin (for carbs)

In the short term, by exploiting 
information in the PPGR Bl
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e
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Laboratory study (proof of concept)

Fifteen subjects consumed nine liquid meals 
with different amounts of macronutrients
– Participants consumed meals in a fasted state
– Participants rested for 8 hours in a clinic
– Study days were 2-3 days apart
– Participants wore a Freestyle Libre CGM
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Experimental data (2)

At regular intervals, we drew 
blood samples to measure 
four types of biomarkers
– Glucose (CGM, LC, finger stick)
– Amino acids (24 AAs + combos)
– Triglycerides
– Insulin

# Name Abbreviation
1 Aspartate ASP
2 Glutamate GLU
3 HydroxyProline hPRO

4 Asparagine ASN
5 Glutamine GLN
6 Citrulline CIT
7 Serine SER
8 Glycine GLY
9 Arginine ARG

10 Threonine THR
11 tauMethylHistidine tauMEH
12 Alanine ALA
13 Taurine TAU
14 Proline PRO
15 Valine VAL
16 Methionine MET
17 Isoleucine ILE
18 Leucine LEU
19 Tryptophan TRP
20 Phenylalanine PHE
21 Ornithine ORN
22 Histidine HIS
23 Lysine LYS
24 Tyrosine TYR
25 Branched Chain Amino Acids1 BCAA
26 Essential Amino Acids2 EAA
27 Non-Essential Amino Acids3 NEAA
28 Sum Amino Acids4 SUMAA
29 Liquid Chromatography (LC) insulin LC-insulin
30 LC triglycerides LC-TG
31 LC glucose (venous blood) LC-glucose
32 Finger stick glucose (venous blood) Stick-glucose
33 CGM glucose (interstitial fluid) CGM-glucose



Visual inspection of CGM responses
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Data preparation

For each post-prandial glucose response (PPGR), we
– Subtract the baseline at mealtime
– Compute area-under-the-curve (AUC) at various times
– Perform z-score normalization to remove individual diffs
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Prediction model

For prediction, we use an AI technique 
based on decision trees

https://www.datacamp.com/tutorial/decision-tree-classification-python

Ricardo Gutierrez-Osuna | CSE@TAMU 32

https://www.datacamp.com/tutorial/decision-tree-classification-python


𝑔𝑔𝐴𝐴𝑈𝑈𝐶𝐶2

𝑔𝑔𝐴𝐴𝑈𝑈𝐶𝐶4 𝑔𝑔𝐴𝐴𝑈𝑈𝐶𝐶3

< 7.8 ≥ 7.8

< 2.6 ≥ 2.6 < 3.1 ≥ 3.1

𝐶𝐶𝐻𝐻𝑂𝑂 = 25𝑔𝑔 𝐶𝐶𝐻𝐻𝑂𝑂 = 50𝑔𝑔
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Prediction model

For prediction, we use an AI technique 
based on decision trees
– The particular technique is known as XGBoost
– XGBoost builds an ensemble of trees in an iterative fashion

Data set: (𝑋𝑋,𝑦𝑦) Tree 1 Tree 2 Tree𝐵𝐵

Compute 
errors

Compute 
errors

Compute 
errors

Add up predictions



Prediction results from CGM

We report prediction accuracy in terms of the
Normalized Root Mean Square Error (NRMSE)
– NRMSE is the percent error relative to ground truth
– Assume a participant consumed a meal containing 50 grams of carbs,

and the model predicted 40 grams
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Prediction results from CGM

Prediction errors based on CGMs alone 
are too large to be of practical use

In a second step, we investigated additional 
biomarkers that might help reduce errors
– Individual biomarkers (e.g., Leucine)
– Combinations of biomarkers (e.g., Leucine + Glucose)

Potential biomarkers (measured in the study)
– Amino acids (24 individual AAs + combinations)
– Triglycerides
– Insulin



Single-marker predictions (Carbs)
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Single-marker predictions (Protein)

Ricardo Gutierrez-Osuna | CSE@TAMU 38



Single-marker predictions (Fat)
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macro

Biomarker 1
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Biomarker 2 Biomarker N

Model for multi-marker predictions



No Insulin No Glucose

Multi-marker predictions (Carbs)

Notation: GITA

Amino Acids 
Triglycerides 
Insulin 
Glucose
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Multi-marker predictions (Protein)

No Amino Acids
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Multi-marker predictions (Fat)

No Triglycerides
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Ongoing work

Ambulatory study

Ricardo Gutierrez-Osuna | CSE@TAMU 44



Ongoing work

Accounting for macronutrient correlations
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Ongoing work

Implantable sensors for glucose and amino acids

Ricardo Gutierrez-Osuna | CSE@TAMU 46



Ricardo Gutierrez-Osuna | CSE@TAMU 42

Caveats…

Technology can reduce burden
– But is burden always bad?

• There appears to be a tradeoff between reducing user burden and 
enabling users to form the critical habit of monitoring their diet 
[Turner-McGrievy et al., 2021]

– Law of attrition
• eHealth trials tend to experience higher dropout rates than drug

trials [Eysenbach, 2005]
• Adherence to diet monitoring is likely to decrease with time, no 

matter how low-burden the tool is



Thank you
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Q&A
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If you are an RD or RDN and have any questions or concerns about this continuing education activity, 
you may contact CDR directly at QualityCPE@eatright.org.
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